Using Wavelet for Numerical Solution of Fredholm Integral Equations
نویسندگان
چکیده
In this paper, we bring three theorems that enable us to approximate the solution of Ferdholm integral equations of the second kind. Then we use the Coifman wavelets or Coiflets as scaling functions for projection that satisfied the conditions of theorems for approximation. Also we use this projection to convert the integral equation to a Galerkin system, which is the most important of the expansion methods for solving linear integral equations. Finally, by using numerical examples we show that our estimation have a good degree of accuracy
منابع مشابه
A computational wavelet method for numerical solution of stochastic Volterra-Fredholm integral equations
A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...
متن کاملNumerical solution of two-dimensional fuzzy Fredholm integral equations using collocation fuzzy wavelet like operator
In this paper, first we propose a new method to approximate the solution of two-dimensional linear fuzzy Fredholm integral equations of the second kind based on the fuzzy wavelet like operator. Then, we discuss and investigate the convergence and error analysis of the proposed method. Finally, to show the accuracy of the proposed method, we present two numerical examples.
متن کاملApplying fuzzy wavelet like operator to the numerical solution of linear fuzzy Fredholm integral equations and error analysis
In this paper, we propose a successive approximation method based on fuzzy wavelet like operator to approximate the solution of linear fuzzy Fredholm integral equations of the second kind with arbitrary kernels. We give the convergence conditions and an error estimate. Also, we investigate the numerical stability of the computed values with respect to small perturbations in the first iteration....
متن کاملNumerical Solution of Interval Volterra-Fredholm-Hammerstein Integral Equations via Interval Legendre Wavelets Method
In this paper, interval Legendre wavelet method is investigated to approximated the solution of the interval Volterra-Fredholm-Hammerstein integral equation. The shifted interval Legendre polynomials are introduced and based on interval Legendre wavelet method is defined. The existence and uniqueness theorem for the interval Volterra-Fredholm-Hammerstein integral equations is proved. Some examp...
متن کاملConstructing Two-Dimensional Multi-Wavelet for Solving Two-Dimensional Fredholm Integral Equations
In this paper, a two-dimensional multi-wavelet is constructed in terms of Chebyshev polynomials. The constructed multi-wavelet is an orthonormal basis for space. By discretizing two-dimensional Fredholm integral equation reduce to a algebraic system. The obtained system is solved by the Galerkin method in the subspace of by using two-dimensional multi-wavelet bases. Because the bases of subs...
متن کاملThe method of radial basis functions for the solution of nonlinear Fredholm integral equations system.
In this paper, An effective and simple numerical method is proposed for solving systems of integral equations using radial basis functions (RBFs). We present an algorithm based on interpolation by radial basis functions including multiquadratics (MQs), using Legendre-Gauss-Lobatto nodes and weights. Also a theorem is proved for convergence of the algorithm. Some numerical examples are presented...
متن کامل